

0277-5387(95)00025-9

THE STUDY OF ISOLOBAL DISPLACEMENT REACTIONS. SYNTHESIS AND CHARACTERIZATION OF HETERONUCLEAR TRANSITION-METAL CLUSTERS $[(\eta^5\text{-RC}_5H_4)(CO)_2M]$ $[(\eta^5-R'C_5H_4)(CO)_2M'[Fe(CO)_3(\mu_3-S), [(\eta^5-R'C_5H_4)(CO)_2M']_2Fe(CO)_3(\mu_3-S)]$ $(M,M' = Mo$ or W) AND $[(\eta^5\text{-MeO}_2, CC_5H_4)(CO)_2W]$ $[(\eta^5\text{-}\mathrm{MeC(O)C}_5H_4)(CO),\mathrm{W}] \text{Fe(CO)}_3(\mu_3-S)$

LI-CHENG SONG,* JIN-YU SHEN, QING-MEI **HU and** XIANG-DONG QIN

Department of Chemistry, Nankai University, Tianjin, 300071, China

(Received 13 December 1994 ; *accepted* 20 *December* 1994)

Abstract—The isolobal displacement reactions between cluster compounds $[(n^5 \text{-RC}, H_4)]$ $(CO)₂M]Fe(CO)₃Co(CO)₃(\mu₃-S)$ and group 6 metal anions $\eta^5-R'C₅H₄(CO)₃M⁻$ afforded eight heteronuclear transition-metal clusters $[(\eta^5\text{-}RC_5H_4)(CO)_2M][(\eta^5\text{-}R'C_5H_4)$ $(CO)₂M'$]Fe(CO)₃(μ ₃-S) (1a: R = CO₂Et, M = W, R' = H, M' = Mo; 1b: CO₂Me, W, C(O)Me, Mo; **lc**: CO₂Me, W, CO₂Me, Mo; **ld**: CO₂Et, Mo, Me, W) and $[(\eta^5 \text{- R}^t C_5 H_4)$ $(CO_2,M']_2Fe(CO)_3(\mu_3-S)$ (2a: R' = H, M' = Mo; 2b: C(O)Me, Mo; 2c: CO₂Me, Mo; **2d:** Me, W). Similarly, the isolobal reaction between $[(\eta^5 \text{-} MeO_2CC_5H_4)]$ $(CO)₂W]Fe(CO)₃Co(CO)₃(\mu₃-S)$ and $\eta⁵-MeC(O)C₅H₄(CO)₃W⁻$ gave three heteronuclear transition metal clusters $[(\eta^5\text{-MeO}_2CC_5H_4)(CO)_2W][(\eta^5\text{-MeC}(O)C_5H_4)(CO)_2W]$ $Fe(CO)_3(\mu_3-S)$ (le), $[(\eta^5\text{-}MeC(O)C_5H_4)(CO)_2W]_2Fe(CO)_3(\mu_3-S)$ (2e) and $[(\eta^5\text{-}MeO_2)$ CC_5H_4)(CO)₂W]₂Fe(CO)₃(μ ₃-S) (3). All the compounds **1a–e**, 2a–e and 3 were fully characterized by elemental and spectroscopic analyses. In addition, the possible reaction pathways for the formation of these products are preliminarily proposed.

In recent years the isolobal displacement reactions, due to their theoretical interest and wide uses in rational synthesis of transition-metal cluster complexes, have attracted considerable attention. $1-19}$ So far, many examples are known in which a d^9 ML₃ fragment $Co(CO)$ ₃ can be displaced by an isolobal d^5 ML₅ fragment Cp^{*}(CO)₂M (Cp^{*} = Cp or substituted Cp; $M = Cr$, Mo, W). ¹⁻¹⁶ However, it remains obscure whether or not two different d^5 ML_5 fragments of the type $Cp^*(CO)_{2}M$ could displace each other in the system involving $Co(CO)_{3}$ containing cluster complexes. In order to answer this question and to develop the rational synthetic method for transition-metal cluster complexes, we have carried out an investigation of the isolobal reactions between $[(\eta^5 \text{-} RC_5H_4)(CO)_2M]Fe(CO)_3Co$

 $(CO)_{3}(\mu_{3}-S)$ (R = CO₂Me, CO₂Et; M = Mo, W) and η^5 -R'C₅H₄(CO)₃M'⁻(R = H, Me, C(O)Me, $CO₂Me$; M = Mo, W) and between $[(\eta^5 \text{-MeO}_2C)$ C_5H_4 $(CO_2W]Fe(CO_3, Co(CO_3(\mu_3-S))$ and n^5 -MeC $(O)C_5H_4(CO)$ ₃W⁻. Herein we report the results concerning this study.

EXPERIMENTAL

All reactions were carried out under dry nitrogen. Diglyme and THF were distilled from sodium benzophenone ketyl and purged with nitrogen prior to use. $Mo(CO)_{6}$ and $W(CO)_{6}$ were purchased from Strem Chemicals Inc., $MeC(O)C_5H_4Na$, MeO_2 $CC_5H_4Na^{20}$ $[\eta^5-C_5H_5Mo(CO)_3]_2$, $[\eta^5-MeC_5H_4W]$ $(CO)_{3}]_{2}$ ²¹ $[(\eta^5\text{-EtO}_2CC_5H_4)(CO)_2Mo]Fe(CO)_3Co$ $(CO)_{3}(\mu_{3}-S)$, $[(\eta^{5}-MeO_{2}CC_{5}H_{4})(CO)_{2}W]Fe(CO)_{3}$ $Co(CO)_{3}(\mu_{3}-S), [(\eta^{5}-EtO_{2}CC_{5}H_{4})(CO)_{2}W]Fe(CO)_{3}$ $Co(CO)_{3}(\mu_{3}-S)^{16}$ were prepared according to litera-

^{*}Author to whom correspondence should be addressed.

ture methods. The progress of the reactions was monitored by TLC and products were separated on silica gel plates $(20 \times 17 \times 0.3 \text{ cm}, 10 - 14 \mu)$. IR spectra were recorded on a Nicolet FT-IR 5DX infrared spectrophotometer and 1H NMR spectra on a JEOL FX 90Q NMR spectrometer. Combustion analysis, MS and melting points were obtained by using a Perkin-Elmer Model 240C analyser, an HP5988A spectrometer and a Yanako MP-500 instrument, respectively.

Reaction of η^5 *-C_sH₅(CO)₃Mo⁻ with* $[(\eta^5$ *-EtO₂* CC_5H_4 $(CO_2W]Fe(CO_3Co(CO)_3(\mu_3-S)$

 A 100 cm³ two-necked flask fitted with a magnetic bar, a rubber septum and a reflux condenser topped with a nitrogen inlet tube was charged with 142 mg (0.29 mmol) of $[\eta^5{\text{-}}C_5H_5Mo(CO)_3]_2$, excess sodium sand and 20 cm^3 of THF. The mixture was stirred until the colour of the solution changed from red to light yellow. The resulting THF solution of η^5 - $C_5H_5(CO)$ ₃MoNa was transferred to another 100 $cm³$ two-necked flask and 200 mg (0.29 mmol) of $[(\eta^5\text{-EtO}_2CC_5H_4)(CO)_2W]Fe(CO)_3Co(CO)_3(\mu_3-S)$ was added. After the mixture was stirred at reflux for 4 h, the solvent was removed at reduced pressure and the residue extracted by CH_2Cl_2 . The extracts were concentrated and separated on silica gel plates using $2:1 \text{ CH}_{2}Cl_{2}/\text{petroleum}$ ether as eluent to develop five bands (i) red (trace), (ii) red (trace), (iii) brown yellow (trace), (iv) brown yellow, (v) brown yellow. From the fourth and fifth bands, 25 mg (14%) of 2a and 30 mg (14%) of 1a were obtained as black solids respectively. $1a$, m.p. 126– 128~C. Found: C, 30.8; H, 2.0. Calc. for $C_{20}H_{14}FeMoO_9SW$: C, 31.4; H, 1.8%. IR (KBr, disc) : $v(\text{C=O}), 2041s, 1975s, 1893m, 1844m \text{ cm}^{-1}$; $v(C=0)$, 1713m cm⁻¹. ¹H NMR (CDCl₃, δ , ppm) : 1.34 (t, $J = 7.2$ Hz, 3H, $CO_2CH_2CH_3$), 4.32 (q, $J = 7.2$ Hz, 2H, CO₂CH₂CH₃), 5.36, 5.42–5.58 (s, m, 7H, C₅H₅, H³, H⁴), 5.74–5.96 (m, 2H, H², H⁵). MS (EI), m/z (Mo⁹⁸, W¹⁸⁴, rel. int.): 768 (P⁺, 3.1%), 712 (P⁺-2CO, 3.0), 684 (P⁺-3CO, 4.9), 656 (P⁺-4CO, 11.0), 628 (P⁺-5CO, 44.1), 600 (P⁺-6CO, 50.1), 572 (P⁺-7CO, 12.0), 630 [SFeMoW(C₅H₄) $(CO)_7^+$, 29.6], 602 [SFeMoW $(C_5H_4)(CO)_6^+$, 32.8], 574 [SFeMoW(C₅H₄)(CO)⁺, 7.8], 546 [SFe $MoW(C_5H_4)(CO)_4^+, 5.3], 518 [SFeMoW(C_5H_4)]$ $(CO)_3^+$, 10.8], 490 [SFeMoW $(C_5H_4)(CO)_2^+$, 2.3], 462 [SFeMoW(CsH4)(CO) +, 12.9], 434 [SFeMoW $(C_5H_4)^+$, 15.0], 566 [SFeMoW(CO)⁺, 6.8], 538 $[SFeMoW(CO)₆, 22.7], 510 [SFeMoW(CO)₅,$ 40.1], 482 $(SFeMoW(CO)₄⁺, 5.2]$, 454 $[SFe$ $Mow(CO)₃$, 9.3], 426 [SFeMoW(CO)⁺, 7.3], 398 $[SFeMoW(CO)^+, 4.3], 370 [SFeMoW^+, 2.5].$ 2a,

m.p. 205-206 $^{\circ}$ C. IR and ¹H NMR data are identical with those in literature. 22

Reaction of η^5 -MeC(O)C₅H₄(CO)₃Mo⁻ *with* [(η^5 - $MeO₂CC₅H₄)(CO)₂W]Fe(CO)₃Co(CO)₃(\mu₃-S)$

To the flask described above 153 mg (0.58 mmol) of $Mo(CO)_{6}$, 75 mg (0.58 mmol) of MeC $(O)C₅H₄Na$ and 20 cm³ of THF were added. The solution was refluxed for 15 h. After the reaction of the resulting η^5 -MeC(O)C₅H₄(CO)₃MoNa with 198 mg (0.29 mmol) of $[(\eta^5\text{-MeO}_2CC_5H_4)(CO)_2W]$ $Fe(CO)₃Co(CO)₃(\mu₃-S)$ and a similar method to that described above, 53 mg (23%) of **1b** and 10 mg (5%) of 2b were obtained as brown–red solids and black solids respectively. **1b**, m.p. $122-124$ ^oC. Found: C, 31.7; H, 1.8. Calc. for C_{21} $H_{14}FeMoO_{10}SW$: C, 31.8; H, 1.8%. IR (KBr, disc): $v(C=0)$, 2041s, 1983s, 1901s, 1877m, 1835m, cm⁻¹; $v(C=0)$, 1729m, 1680m, cm⁻¹. ¹H NMR (CDCl₃, δ , ppm): 2.40 [s, 3H, C(O)CH₃], 3.90 (s, $3H, CO, CH₃$), 5.10, 5.38, 5.46–5.64 [q, q, m, 4H, $2(H^3, H^4)$], 5.70–6.06 [m, 4H, $2(H^2, H^5)$]. MS (EI), m/z (Mo⁹⁸, W¹⁸⁴, rel. int.) : 656 (P⁺-5CO, 7%), 628 $(P^+$ -6CO, 11), 600 $(P^+$ -7CO, 5), 554 $[SFeMoW(C_5H_4)_2(CO)_2^+, 7]$, 630 $[SFeMoW(C_5H_4)$ (CO)⁺, 6], 490 [SFeMoW(C₅H₄)(CO)⁺, 5], 462 $[SFeMoW(C₅H₄)(CO)⁺, 7]$, 566 $[SFeMoW(CO)⁺,$ 6], 538 [SFeMoW(CO) $_6^+$, 11], 510 [SFeMoW] $(CO)^{+}_{5}$, 9], 482 [SFeMoW $(CO)^{+}_{4}$, 5], 426 [SFeMoW $(CO)_2^+$, 5]. 2b, m.p. 129–130°C. Found: C, 35.9; H, 1.8. Calc. for $C_{21}H_{14}FeMo_2O_9S$: C, 36.6; H, 2.0%. IR (KBr, disc): $v(C=0)$, 2032s, 1975s, 1950s, 1918m, 1860s cm⁻¹; $v(C=0)$, 1680s cm⁻¹. ¹H NMR (CDCl₃, δ , ppm) : 2.40 [s, 6H, 2C(O)CH₃], 5.24, 5.48 [q, q, 4H, 2(H^3 , H^4)], 5.84 [t, 4H, 2(H^2 , H⁵)]. MS (EI), m/z (Mo⁹⁸, rel. int.) : 526 (P⁺-6CO), 10.9%), 498 (P⁺-7CO, 3.8), 608 [SFeMo₂(C₅H₄)₂ $(CO)_7^+$, 2.6], 552 [SFeMo₂(C₅H₄)₂(CO)^{$+$}, 4.1], 524 $[SFeMo_{2}(C_{5}H_{4})_{2}(CO)^{+}_{4}, 6.8]$, 496 $[SFeMo_{2}(C_{5}H_{4})_{2}]$ $(CO)₃$, 8.3], 468 [SFeMo₂(C₅H₄)₂(CO)⁺₂, 4.7], 404 $[SFeMo₂(C₅H₄)(CO)⁺₂, 3.2].$

Reaction of η^5 -MeO₂CC₅H₄(CO)₃Mo⁻ *with* $[(\eta^5 MeO₂CC₅H₄)(CO)₂W]Fe(CO)₃Co(CO)₃(μ ₃-S)$

To the flask described above were added 153 mg (0.58 mmol) of Mo(CO)_6 , 85 mg (0.58 mmol) of $MeO₂CC₅H₄Na$ and 20 cm³ of THF. The solution was refluxed for 15 h. After the reaction of the resulting η^5 -MeO₂CC₅H₄(CO)₃MoNa with 196 mg (0.29 mmol) of $[(\eta^5\text{-MeO}_2CC_5H_4)(CO)_2W]Fe$ $(CO)_{3}Co(CO)_{3}(\mu_{3}-S)$ and similar method to that described above, 33 mg (14%) of 1c and 12 mg (6%) of 2e were obtained as black solids respectively, le, m.p. 131–132°C. Found: C. 31.1; H, 1.8. Calc. for

 $C_{21}H_{14}FeMoO_{11}SW$: C, 31.1; H, 1.7%. IR (KBr, disc): $v(C=0)$, 2032s, 1983s, 1950s, 1909m, 1860s cm⁻¹; $v(C=0)$, 1713s cm⁻¹. ¹H NMR (CDCl₃, δ , ppm) : 3.78 (s, 3H, CO₂CH₃), 3.82 (s, 3H, CO₂CH₃), 4.94–5.10, 5.14–5.30, 5.30–5.50 [m, m, m, 4H, 2(H^3 , H⁴)], 5.54–5.94 [m, 4H, 2(H², H⁵)]. MS (EI), m/z $(Mo⁹⁸, W¹⁸⁴, rel. int.)$: 728 (P⁺-3CO, 22%), 700 $(P^+$ -4CO, 7), 672 $(P^+$ -5CO, 36), 644 $(P^+$ -6CO, 99), 616 (P⁺-7CO, 14), 666 [SFeMoW(C_sH₄)₂(CO)⁺₁, 14], 638 [SFeMoW(C₅H₄)₂(CO)⁺, 48], 582 $[SFeMoW(C₅H₄)₂(CO)₃⁺, 18], 554 [SFeMoW]$ $(C_5H_4)_2(CO)_2^+$, 33], 526 [SFeMoW $(C_5H_4)_2(CO)^+$, 78], 498 [SFeMoW(C_5H_4)⁺, 25], 546 [SFe $Mow(C_5H_4)(CO)_4^+$, 6], 518 [SFeMoW(C₅H₄) $(CO)_3^+$, 16], 490 [SFeMoW $(C_5H_4)(CO)_2^+$, 21], 462 [SFeMoW(C₅H₄)(CO)⁺, 15], 434 [SFe $MoW(C_5H_4)^+, 7], 538 [SFeMoW(CO)_6^+, 10],$ 510 [SFeMoW(CO) $_5^+$, 16], 482 [SFeMoW(CO) $_4^+$, 12], 454 [SFeMoW(CO)⁺, 11], 426 [SFeMoW $(CO)_2^+$, 10], 398 [SFeMoW $(CO)^+$, 7]. 2e, m.p. 119– 120"C. Found: C, 34.8; H, 2.0. Calc. for $C_{21}H_{14}FeMo_2O_{11}S$: C, 35.0; H, 2.0%. IR (KBr, disc): $v(C=0)$, 2041s, 1983s, 1959s, 1909m, 1868s cm⁻¹; $v(C=0)$, 1721s cm⁻¹. ¹H NMR (CDCl₃, δ , ppm): 3.88 (s, $6H$, $2CO_2CH_3$), 5.24, 5.48 [q, q, 4H, $2(H^3, H^4)$], 5.94 [q, 4H, 2(H², H⁵)], MS (EI), m/z $(Mo⁹⁸,$ rel. int.): 586 (P⁺-5CO, 4.6%), 558 (P⁺-6CO, 8.6), 608 [SFeMo₂(C₅H₄)₂(CO)⁺, 1.7], 580 $[{\rm SFeMo}_2(C_5H_4)_2({\rm CO})_6^+$, 11.9], 552 [SFeMo₂ $(C_5H_4)_2(CO)_5^+$, 15.7], 524 [SFeMo₂ $(C_5H_4)_2(CO)_4^+$, 2.8], 496 [SFeMo₂(C₅H₄)₂(CO)⁺, 6.5], 468 [SFe $Mo_{2}(C_{5}H_{4})_{2}(CO)^{+}_{2}$, 5.7], 440 [SFeMo₂(C₅H₄)₂(CO)⁺, 8.3], 412 [SFeMo₂(C₅H₄)⁺, 6.6], 404 [SFe $Mo_{2}(C_{5}H_{4})(CO)^{+}_{2}$, 2.8], 376 [SFeMo₂(C₅H₄)(CO)⁺, 4.8], 348 [SFeMo₂(C₅H₄)⁺, 3.1], 340 [SFeMo₂ $(CO)^{+}$, 4.1].

Reaction of η^5 -MeC₅H₄(CO)₃W⁻ *with* $[(\eta^5$ -EtO₂ CC_5H_4 $(CO_2Mo]Fe(CO_3Co(CO)_3(\mu_3-S)$

To the flask described above were added 201 mg (0.29 mmol) of $[\eta^5\text{-}MeC_5H_4(CO)_3W]_2$, excess sodium sand and 20 cm^3 of THF. The mixture was stirred until the colour of the solution changed from red to light yellow. The resulting solution of n^5 - $MeC₅H₄(CO)₃$ WNa in THF was transferred into another 100 cm^3 two-necked flask and 176 mg (0.29) mmol) of $[(\eta^5\text{-EtO}_2CC_5H_4)(CO)_2\text{Mo}]Fe(CO)_3$ $Co(CO)_{3}(\mu_{3}-S)$ was added. The mixture was refluxed for additional 4 h. After the similar workup described above, 38 mg (17%) of ld and 91 mg (39%) of 2d were obtained as black solids and brown red viscous oil respectively, ld, m.p. 125 12T'C. Found: C, 32.4; H, 1.8. Calc. for $C_{21}H_{16}FeMoO_9SW$: C, 32.3; H, 2.1%. IR (KBr, disc): $v(C=0)$, 2032s, 1991s, 1959s, 1893s, 1869s,

1836s cm⁻¹; $v(C=0)$, 1704s cm⁻¹. ¹H NMR (CDCl₃, δ , ppm): 1.36 [t, J=7.2Hz, 3H, CO₂CH₂CH₃], 2.30 (s, 3H, CH₃), 4.32 (q, $J = 7.2$ Hz, 2H, $CO_2CH_2CH_3$), 4.88–5.56 [m, 6H, H³ and H⁴ of the $C_5H_4CO_2C_2H_5$ ring and 4H of the $C_5H_4CH_3$ ring], 5.84-6.12 [m, 2H, H^2 and H^5 of the $C_5H_4CO_2C_2H_5$ ring]. MS (EI), m/z (Mo⁹⁸, W¹⁸⁴, rel. int.): 642 (P⁺-5CO, 37%), 614 (P⁺-6CO, 25), 586 (P⁺-7CO, 22), 638 [SFeMoW(C₅H₄)₂(CO)⁺, 36], 610 [SFeMoW(C₅H₄)₂(CO)⁺, 24], 582 $[SFeMoW(C₅H₄)₂(CO)⁺₃, 26], 554 [SFeMoW]$ $(C_5H_4)_2(CO)_2^+$, 8], 526 [SFeMoW $(C_5H_4)_2(CO)^+$, 33], 498 [SFeMoW(C_5H_4)⁺, 12], 518 [SFeMoW $(C_5H_4)(CO)_3^+$, 10], 462 [SFeMoW $(C_5H_4)(CO)^+$, 16], 538 [SFeMoW(CO) $_6^+$, 9], 510 [SFeMoW $(CO)^+$, 28], 482 [SFeMoW $(CO)^+$, 12], 454 [SFe $Mow(CO)_3^+$, 16], 426 [SFeMoW(CO) $_2^+$, 36], 398 $[SFeMoW(CO)^+, 9]$. 2d, Found: C, 28.4; H, 1.8. Calc. for $C_{19}H_{14}FeO_7SW_2$: C, 28.2; H, 1.7%. IR $(KBr, disc):v(C=O), 2065s, 2016s, 1983s, 1893s$ cm⁻¹. ¹H NMR (CDCl₃, δ , ppm): 2.34 (s, 6H, $2CH_3$), 5.10-5.66 (m, 8H, $2C_5H_4$). MS (EI), $m/z(W^{184}, \text{ rel. int.}): 632 \quad [\text{S} \text{FeW}_2(\text{C}_5\text{H}_4)(\text{CO})_4^+,$ 0.6%], 604 [SFeW₂(C₅H₄)(CO)⁺, 1.7], 576 $[SFew_2(C_5H_4)(CO)_2^+, 0.6]$, 548 $[SFew_2(C_5H_4)$ $(CO)^+$, 2.0], 520 [SFeW₂(C₅H₄)⁺, 2.7].

Reaction of n^5 -MeO₂CC₅H₄(CO)₃Mo⁻ with **1c**

To the flask described above were added 106 mg (0.4 mmol) of $Mo(CO)₆$, 58 mg (0.4 mmol) of $MeO₂CC₅H₄Na$ and 15 cm³ of THF. The solution was stirred at reflux for 15 h. After the reaction of the resulting η^5 -MeO₂CC₅H₄(CO)₃MoNa with 159 mg (0.20 mmol) of **1c**, followed by similar workup described above, 135 mg (85%) of le was recovered.

Reaction of η^5 -MeC(O)C₅H₄(CO)₃W⁻ with $\lceil(\eta^5 MeO₂CC₅H₄)(CO)₂W]Fe(CO)₃Co(CO)₃(\mu₃-S)$

To the flask described above were added 415 mg (1.18 mmol) of $W(CO)_{6}$, 153 mg (1.18 mmol) of $MeC(O)C₅H₄Na$ and 20 cm³ of diglyme. The mixture was refluxed for 6 h. After the solvent was removed at reduced pressure, 400 mg (0.59 mmol) of $[(\eta^5\text{-MeO}_2CC_5H_4)(CO)_2W]Fe(CO)_3Co(CO)_3(\mu_3-$ S) and 20 cm^3 of THF were added. The mixture was refluxed for an additional 4 h. After a similar method to that described above, 131 mg (25%) of **1e**, 69 mg (14%) of 2e and 55 mg (10%) of 3 were obtained as brown, brown and black solids, respectively. 1e, m.p. $72-74$ °C. Found : C, 29.0 ; H, 1.5. Calc. for $C_{21}H_{14}FeO_{10}SW_2$: C, 28.6; H, 1.6%. IR (KBr, disc): $v(C=0)$, 2041s, 1975s, 1893m, 1836m cm⁻¹; $v(C=0)$, 1721m, 1680m cm⁻¹. ¹H NMR (CDCl₃, δ , ppm): 2.34 [s, 3H, C(O)CH₃], 3.84 [s, 3H, CO₂CH₃], 5.12–5.40, 5.40–5.60 [m, m, 4H, 2(H³, H⁴)], 5.72-5.96 [m, 4H, 2(H², H⁵)]. MS (EI), m/z (W¹⁸⁴, rel. int.) : 714 (P⁺-6CO, 2.1%), 520 $[SFeW₂(C₅H₄)⁺$, 0.2]. 2e, m.p. 144–145°C. Found: C, 29.2; H, 1.6. Calc. for $C_{21}H_{14}FeO_9SW_2$: C, 29.1; H, 1.6%. IR (KBr, disc): $v(C=0)$, 2041s, 1975s, 1893m, 1836m cm⁻¹; $v(C=0)$, 1680s cm⁻¹. ¹H NMR (CDCl₃, δ , ppm): 2.36 [s, 6H, 2C(O)CH₃], 5.20 – 5.36, 5.48 – 5.62 [m, m, 4H, 2(H^3 , H^4)], 5.68 – 5.92 [m, 4H, 2(H², H⁵)]. MS (EI), m/z (W¹⁸⁴, rel. int.): $698(P⁺-6CO, 0.2%)$, $670(P⁺-7CO, 0.2)$, 668 $[$ SFeW₂(C₅H₄)₂(CO)⁺, 0.2]. 3, m.p. 117–118°C. Found: C, 27.9; H, 1.5. Calc. for $C_{21}H_{14}FeO_{11}SW_2$: C, 28.1; H, 1.6%. IR (KBr, disc): $v(C=0)$, 2041s, 1975s, 1893s, 1836m cm⁻¹; $v(C=0)$, 1721s cm⁻¹. ¹H NMR (CDCl₃, δ , ppm) : 3.82 (s, 6H, 2CO₂CH₃), 5.24, 5.48 [q, q, 4H, $2(H^3, H^4)$], 5.66–6.02 [m, 4H, $2(H^2, H^5)$], MS (EI), $m/z(W^{184},$ rel. int.):730 (P⁺-6CO, 2.0%), 612 [SFeW₂(C₅H₄)₂(CO)⁺, 0.9].

RESULTS AND DISCUSSION

When tetrahedral MFeCoS cluster complexes of the type $[(\eta^5\text{-RC}_5H_4)(CO)_2M]Fe(CO)_3Co(CO)_3(\mu_3-$ S) $(R = CO₂Me, CO₂Et; M = Mo, W)$ were treated with group 6 metal anions $n^5-R'C_5$ $H_4(CO)$ ₃M'⁻(R = H, Me, C(O)Me, CO₂Me; $M' = Mo$, W) in refluxing THF for several hours, four tetrahedral MM'FeS cluster complexes $[(\eta^5\text{-}RC_5H_4)(CO)_2M][\eta^5\text{-}R'C_5H_4(CO)_2M']$ Fe(CO)₃ (μ_3-S) (1a-d) were obtained via the isolobal displacement reaction of a d^9 ML₃ unit Co $(CO)₃²³$ in the starting cluster complexes by the $d⁵$ ML_5 fragment η^5 -R'C₅H₄(CO)₂M'²³ generated from the starting anions, along with four tetrahed-

ral M'M'FeS cluster complexes $[(\eta^5 \text{-R}^t C_5 H_4)]$ $(CO)₂M'₂Fe(CO)₃(\mu₃-S)$ (2a-d) as shown in Scheme 1. Although 1a-d are products derived from the well-known d^9 ML₃/ d^5 ML₅ isolobal displacement reaction, $1-16$ 2a-d are generated through an unknown process involving another type of isolobal displacement reaction between two different $d⁵ML₅$ fragments both having the same basic structure i.e. $Cp^*(CO)$, M.

For the reactions involving two types of isolobal displacement mentioned above, a possible pathway can be suggested, as shown in Scheme 2.

According to the pathway described above the group 6 metal anions $n^5-R'C_5H_4(CO)_3M'^-$ may attack, from either the back of $Co(CO)$ ₃ or the back of η^5 -RC₅H₄(CO)₂M, at the starting cluster compounds $[(\eta^5\text{-RC}_5H_4)(CO)_2M]Fe(CO)_3Co(CO)_3$ $(\mu_3$ -S) to form two anionic intermediates m_1 and m_2 . Then, if the intermediate m_1 loses an anion $(CO)₄Co⁻$, formally as formed from the displaced $Co(CO)_{3}$, one CO and one negative charge from $n⁵$ - $R'C₅H₄(CO)₃M'$, products **1a-d** will be produced. Actually this is the result of the well-known d^9 $ML_3/d^5 ML_5$ isolobal displacement reaction. However, if the intermediate m_2 loses an anion η^5 - $RC₅H₄(CO)$ ₃M⁻, formally as formed from the displaced η^5 -RC₅H₄(CO)₂M, one CO and one negative charge from η^5 -R'C₅H₄(CO)₃M'⁻, the analogues of starting cluster compounds m_3 would be formed. It is this step in which an isolobal displacement reaction between two different d^5 ML₅ fragments $\eta^5\text{-}\mathrm{RC}_5\mathrm{H}_4(\mathrm{CO})_2\mathrm{M}$ and $\eta^5\text{-}\mathrm{R}'\mathrm{C}_5\mathrm{H}_4(\mathrm{CO})_2\mathrm{M}'$ was involved. Finally, products 2a-d are produced by further isolobal displacement of a d^9 ML₃ Co(CO)₃ in m_3 by a d^5 ML_s η^5 -R'C₅H₄(CO)₂M' generated

from η^5 -R'C₅H₄(CO)₃M'⁻. We initially supposed that 2a-d might be produced by isolobal displacement between products $1a-d$ and the isolobal displacement reagents η^5 -R'C₅H₄(CO)₃M'⁻. However, our experiments showed that it was not the case. When a reaction of 1c with η^5 -MeO₂ $CC₅H₄(CO)₃Mo⁻$ was completed, no supposed 2c was formed and only 85% of starting material 1c was recovered.

 $(OC)_3$

Further experiment showed that the reaction of η^5 -MeC(O)C₅H₄(CO)₃W⁻ with $[(\eta^5 \text{-} MeO_2CC_5H_4)]$ $(CO)₂W]Fe(CO)₃Co(CO)₃(\mu₃-S)$, which is different from those reactants mentioned above by having same group 6 metal, i.e. tungsten, gave products le, 2e and 3, as shown in Scheme 3. This result is consistent with the pathway described in Scheme 2 and provides additional evidence to support the pathway shown in Scheme 2. This is because the formation of 3 can be attributed to the isolobal displacement reaction of $Co(CO)$ ₃ in the starting cluster $[(\eta^5\text{-MeO}_2CC_3H_4)(CO)_2W]Fe(CO)_3Co(CO)_3$ $(\mu_3$ -S) by the fragment of η^5 -MeO₂CC₅H₄(CO)₂W

produced from the anion η^5 -MeO₂CC₅H₄(CO)₃W⁻ generated *in situ* through the proceeding isolobal displacement reaction in formation of 2e. However, up to now, we still do not know why the isolobal displacement between different d^5 ML₅ fragments with general formula $Cp^*M(CO)_2(M = Mo, W)$ could occur only in the cluster system in which the unit $Co(CO)$ ₃ should be present.

Except $2a^{23}$ the compounds $1a-e$, $2b-e$ and 3 were all new and fully characterized by elemental analysis, IR, 'H NMR and mass spectroscopy. In their IR spectra terminal carbonyl absorption bands in the range of 2065-1901 cm^{-1} were packed. The bridging carbonyls 24 might also exist due to one to three absorption bands present between 1893 and 1835 cm⁻¹. The IR spectra of $1a-e$, $2b-c$, $2e$ and 3 also showed one or two absorption bands at *ca* 1700 cm^{-1} , which were characteristic of the corresponding functional carbonyl group of the organic substituent on the cyclopentadienyl ring. It is worth pointing out the H NMR spectral features for $1a-e$, $2b-e$, and 3. The protons on the cyclo-

pendadienyl ring of $2b-c$, $2e$, and 3 all exhibited three sets of multiplets, the two upfield quartets (or multiplets) being assigned to $H³$, $H⁴$ remote from the substituent and the downfield triplet (or quartet, or multiplet) assigned to H^2 , H^5 close to the substituent. These assignments are in accord with those for the tetrahedral clusters $[(\eta^5 \text{-} RC_5H_4)]$ $(CO)₂M[Fe(CO)₃Co(CO)₃(\mu₃-S)$ (M = Mo, W) which contain the same type of functionally substituted cyclopentadienyl ring.¹⁶ In view of $1a-e$ either having two different cyclopentadienyl rings or having two different group 6 metals (or both) the H NMR spectra of their protons on the cyclopentadienyls are much more complicated. Generally, these protons exhibited two to four sets of multiplets. For the mass spectra of compounds 1ae, 2b-e and 3, only la showed its molecular ion peak. However, for all these compounds four types of fragment peaks were usually observed in their mass spectra. That is, (i) $(P^+$ -nCO), the fragments by successive loss of carbonyl from molecular ion ; (ii) SFeMoW(C_5H_4)₂(CO)⁺_{-n} or SFeM₂(C₅H₄)₂ $(CO)^{+}_{7-n}(M = Mo, W)$, fragments by successive

loss of carbonyl and substituent R (or R') from molecular ion, (iii) SFeMoW(C_5H_4)(CO) $_{7-n}^+$ or $SFeM_2(C_5H_4)(CO)_{7-n}^+(M = Mo, W)$, fragments by successive loss of carbonyl, substituent R (or R') and one C_5H_4 ring from molecular ion; (iv) $SFeMoW(CO)_{7-n}⁺$ or $SFeM₂(CO)_{7-n}⁻$ (M = Mo, W), fragments by successive loss of carbonyl and two substituted cyclopentadienyls from molecular ion.

Acknowledgements--We are grateful to the National Science Foundation of China for financial support of this work.

REFERENCES

- 1. H. Vahrenkamp, *Comments Inorg. Chem.* 1985, 4, 253.
- 2. D.N. Duffy, M. M. Kassis and A. D. Rae, *J. Organomet. Chem.* 1993, 460, 97.
- 3. C.-A. Dickson and N. J. Coville, *J. Organomet. Chem.* 1992, 427, 335.
- 4. M. F. D'Agostino, C. S. Frampton and M. J. McGlinchey, *J. Organomet. Chem.* 1990, 394, 145.
- 5. H. T. Schacht and H. Vahrenkamp, *J. Organomet. Chem.* 1990, 381, 261.
- 6. V. S. Kaganovich, Yu, L. Slovokhotov, A. V. Mironov, Yu. T. Struchkov and M. I. Rybinskaya, *J. Organomet. Chem.* 1989, 372, 339.
- 7. M. R. Churchill, Y.-J. Li, J. R. Shapley, D. S. Foose and W. S. Uchiyama, *J. Organomet. Chem.* 1986, 312, 121.
- 8. M. Mlekuz, P. Bougeard, M. J. McGlinchey and G. Jaouen, *J. Organomet. Chem.* 1983, 253, 117.
- 9. M. F. D'Agostino, C. S. Frampton and M. J. McGlinchey, *Organometallics* 1990, 9, 2972.
- 10. T. M. Wido, G. H. Young, A. Wojcicki, M. Calligaris and G. Nardin, *Organometallics* 1988, 7, 452.
- 11. S. D. Jensen, B. H. Robinson and J. Simpson, *Organometallics* 1986, 5, 1690.
- 12. M. Mlekuz, P. Bougeard, B. G. Sayer, R. Faggiani, C. J. L. Lock, M. J. McGlinchey and G. Jaouen, *Organometallics* 1985, 4, 2046.
- 13. T. Albiez, H. Bantel and H. Vahrenkamp, *Chem. Ber.* 1990, 123, 1805.
- 14. L.-C. Song, J.-Y. Shen, Q.-M. Hu, B.-S. Han, R.-J. Wang and H.-G. Wang, *Inorg. Chim. Acta* 1994, 219, 93.
- 15. L.-C. Song, J.-Y. Shen, Q.-M. Hu, R.-J. Wang and H.-G. Wang, *Organometallics* 1993, 12, 408.
- **16.** L.-C. Song, J.-Y. Shen, Q.-M. Hu and X.-Y. Huang, *Organometallics* 1995, 14, 98.
- 17. C.P. Horwitz, E. M. Holt and D. F. Shriver, *Organometallics* 1985, 4, 117.
- 18. V. Busetti, G. Granozzi, S. Aime, R. Gobetto and D. Osella, *Organometallics* 1984, 3, 1510.
- 19. J. W. Kolis, E. M. Holt, J. A. Hriljac and D. F. Shriver, *Organometallics* 1984, 3, 496.
- 20. W. P. Hart, D. W. Macomber and M. D. Rausch, J. *Am. Chem. Soc.* 1980, 102, 1196.
- 21. R. Birdwhistell, P. Hackett and A. R. Manning, J. *Organomet. Chem.* 1978, 157, 239.
- 22. F. Richter, E. Roland and H. Vahrenkamp, *Chem. Ber.* 1984, 117, 2429.
- 23. R. Hoffmann, *Angew, Chem. Int. Ed. Engl.* 1982, 21, 711.
- 24. R. J. Klingler, W. M. Butler and M. D. Curtis, J. *Am. Chem. Soc.* 1978, 100, 5034.